diff --git a/slo-checker/generic/app/main.py b/slo-checker/generic/app/main.py index e483c26b4f421d00e093ad70ff8d12d0a9bb9e62..6dd78ac131c3c5f7a6e163ae729ab3d3e396dbde 100644 --- a/slo-checker/generic/app/main.py +++ b/slo-checker/generic/app/main.py @@ -37,7 +37,7 @@ def aggr_query(values: dict, warmup: int, aggr_func): df = pd.DataFrame.from_dict(values) df.columns = ['timestamp', 'value'] filtered = df[df['timestamp'] >= (df['timestamp'][0] + warmup)] - filtered['value'] = filtered['value'].astype(float).astype(int) + filtered['value'] = filtered['value'].astype(float) return filtered['value'].aggregate(aggr_func) def check_result(result, operator: str, threshold): @@ -63,7 +63,7 @@ async def check_slo(request: Request): query_aggregation = get_aggr_func(data['metadata']['queryAggregation']) rep_aggregation = get_aggr_func(data['metadata']['repetitionAggregation']) operator = data['metadata']['operator'] - threshold = int(data['metadata']['threshold']) + threshold = float(data['metadata']['threshold']) query_results = [aggr_query(r[0]["values"], warmup, query_aggregation) for r in data["results"]] result = pd.DataFrame(query_results).aggregate(rep_aggregation).at[0] diff --git a/slo-checker/record-lag/app/main.py b/slo-checker/record-lag/app/main.py index bb68580a638a40bc7ae975594b859d10784adc67..1141ac88d800d2e0204a32b9f07f1aed78f5e200 100644 --- a/slo-checker/record-lag/app/main.py +++ b/slo-checker/record-lag/app/main.py @@ -27,7 +27,7 @@ def calculate_slope_trend(results, warmup): group = result['metric'].get('consumergroup', "default") for value in result['values']: d.append({'group': group, 'timestamp': int( - value[0]), 'value': int(value[1]) if value[1] != 'NaN' else 0}) + value[0]), 'value': float(value[1]) if value[1] != 'NaN' else 0}) df = pd.DataFrame(d)