#!/usr/bin/env python3.7 import sys import os from strategies.config import ExperimentConfig import strategies.strategies.default_strategy as default_strategy from strategies.experiment_execution import ExperimentExecutor import strategies.subexperiment_execution.subexperiment_executor as subexperiment_executor uc=sys.argv[1] dim_values=sys.argv[2].split(',') replicas=sys.argv[3].split(',') partitions=sys.argv[4] if len(sys.argv) >= 5 and sys.argv[4] else 40 cpu_limit=sys.argv[5] if len(sys.argv) >= 6 and sys.argv[5] else "1000m" memory_limit=sys.argv[6] if len(sys.argv) >= 7 and sys.argv[6] else "4Gi" kafka_streams_commit_interval_ms=sys.argv[7] if len(sys.argv) >= 8 and sys.argv[7] else 100 execution_minutes=sys.argv[8] if len(sys.argv) >= 9 and sys.argv[8] else 5 benchmark_strategy=sys.argv[9] if len(sys.argv) >= 10 and sys.argv[9] else "default" print("Chosen benchmarking strategy: "+benchmark_strategy) print("Going to execute " + str(len(dim_values)*len(replicas)) + " subexperiments in total..") experiment_config = ExperimentConfig(uc, dim_values, replicas, partitions, cpu_limit, memory_limit, kafka_streams_commit_interval_ms, execution_minutes, default_strategy, subexperiment_executor) executor = ExperimentExecutor(experiment_config) executor.execute()