Newer
Older
/***************************************************************************
* Copyright 2014 Kieker Project (http://kieker-monitoring.net)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
***************************************************************************/
package teetime.util;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.TimeUnit;
import teetime.variant.explicitScheduling.examples.throughput.TimestampObject;
* @since 1.10
*/
public class StatisticsUtil {
/**
* @since 1.10
*/
private StatisticsUtil() {
// utility class
}
public static void calculateAvg(final List<Long> durations) {
}
public static PerformanceResult printStatistics(final long overallDurationInNs, final List<TimestampObject> timestampObjects) {
PerformanceResult performanceResult = new PerformanceResult();
performanceResult.overallDurationInNs = overallDurationInNs;
System.out.println("Duration: " + TimeUnit.NANOSECONDS.toMillis(overallDurationInNs) + " ms");
final List<Long> sortedDurationsInNs = new ArrayList<Long>(timestampObjects.size() / 2);
long sumInNs = 0;
for (int i = timestampObjects.size() / 2; i < timestampObjects.size(); i++) {
final TimestampObject timestampObject = timestampObjects.get(i);
final long durationInNs = timestampObject.getStopTimestamp() - timestampObject.getStartTimestamp();
// sortedDurationsInNs.set(i - (timestampObjects.size() / 2), durationInNs);
sortedDurationsInNs.add(durationInNs);
sumInNs += durationInNs;
}
performanceResult.sumInNs = sumInNs;
final Map<Double, Long> quintileValues = StatisticsUtil.calculateQuintiles(sortedDurationsInNs);
performanceResult.quantiles = quintileValues;
System.out.println("avg duration: " + TimeUnit.NANOSECONDS.toMicros(avgDurInNs) + " µs");
performanceResult.avgDurInNs = avgDurInNs;
System.out.println(getQuantilesString(quintileValues));
final long confidenceWidthInNs = StatisticsUtil.calculateConfidenceWidth(sortedDurationsInNs, avgDurInNs);
performanceResult.confidenceWidthInNs = confidenceWidthInNs;
System.out.println("confidenceWidth: " + confidenceWidthInNs + " ns");
System.out.println("[" + TimeUnit.NANOSECONDS.toMicros(avgDurInNs - confidenceWidthInNs) + " µs, "
+ TimeUnit.NANOSECONDS.toMicros(avgDurInNs + confidenceWidthInNs) + " µs]");
public static String getQuantilesString(final Map<Double, Long> quantilesValues) {
StringBuilder builder = new StringBuilder();
for (final Entry<Double, Long> entry : quantilesValues.entrySet()) {
String quantile = (entry.getKey() * 100) + " % : " + TimeUnit.NANOSECONDS.toNanos(entry.getValue()) + " ns";
builder.append(quantile);
builder.append("\n");
return builder.toString();
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
public static long calculateConfidenceWidth(final List<Long> durations, final long avgDurInNs) {
final double z = 1.96; // for alpha = 0.05
final double variance = MathUtil.getVariance(durations, avgDurInNs);
final long confidenceWidthInNs = (long) MathUtil.getConfidenceWidth(z, variance, durations.size());
return confidenceWidthInNs;
}
public static long calculateConfidenceWidth(final List<Long> durations) {
return StatisticsUtil.calculateConfidenceWidth(durations, StatisticsUtil.calculateAverage(durations));
}
public static long calculateAverage(final List<Long> durations) {
long sumNs = 0;
for (final Long value : durations) {
sumNs += value;
}
return sumNs / durations.size();
}
public static Map<Double, Long> calculateQuintiles(final List<Long> durationsInNs) {
Collections.sort(durationsInNs);
final Map<Double, Long> quintileValues = new LinkedHashMap<Double, Long>();
final double[] quintiles = { 0.00, 0.25, 0.50, 0.75, 1.00 };
for (final double quintile : quintiles) {
final int index = (int) ((durationsInNs.size() - 1) * quintile);
quintileValues.put(quintile, durationsInNs.get(index));
}
return quintileValues;
}