Select Git revision
trend_slope_computer.py
trend_slope_computer.py 831 B
from sklearn.linear_model import LinearRegression
import pandas as pd
import os
def compute(directory, filename, warmup_sec, threshold):
df = pd.read_csv(os.path.join(directory, filename))
input = df
input['sec_start'] = input.loc[0:, 'timestamp'] - input.iloc[0]['timestamp']
regress = input.loc[input['sec_start'] >= warmup_sec] # Warm-Up
X = regress.iloc[:, 2].values.reshape(-1, 1) # values converts it into a numpy array
Y = regress.iloc[:, 3].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column
linear_regressor = LinearRegression() # create object for the class
linear_regressor.fit(X, Y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions
trend_slope = linear_regressor.coef_[0][0]
return trend_slope