Skip to content
Snippets Groups Projects
Commit 892ff732 authored by Sören Henning's avatar Sören Henning
Browse files

Let users set the filename manually in plot cell

parent 3ed70c99
No related branches found
No related tags found
1 merge request!190Update demant-metric notebooks in order to run with the new implementation
%% Cell type:markdown id: tags:
# Theodolite Analysis - Plotting the Demand Metric
This notebook creates a plot, showing scalability as a function that maps load intensities to the resources required for processing them. It is able to combine multiple such plots in one figure, for example, to compare multiple systems or configurations.
The notebook takes a CSV file for each plot mapping load intensities to minimum required resources, computed by the `demand-metric-plot.ipynb` notebook.
%% Cell type:markdown id: tags:
First, we need to import some libraries, which are required for creating the plots.
%% Cell type:code id: tags:
```
import os
import pandas as pd
from functools import reduce
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from matplotlib.ticker import MaxNLocator
```
%% Cell type:markdown id: tags:
We need to specify the directory, where the demand CSV files can be found, and a dictionary that maps a system description (e.g. its name) to the corresponding CSV file (prefix). To use Unicode narrow non-breaking spaces in the description format it as `u"1000\u202FmCPU"`.
%% Cell type:code id: tags:
```
results_dir = '<path-to>/results'
plot_name = '<plot-name>'
experiments = {
'System XYZ': 'exp200',
}
```
%% Cell type:markdown id: tags:
Now, we combie all systems described in `experiments`.
%% Cell type:code id: tags:
```
dataframes = [pd.read_csv(os.path.join(results_dir, f'{v}_demand.csv')).set_index('load').rename(columns={"resources": k}) for k, v in experiments.items()]
df = reduce(lambda df1,df2: df1.join(df2,how='outer'), dataframes)
```
%% Cell type:markdown id: tags:
We might want to display the mappings before we plot it.
%% Cell type:code id: tags:
```
df
```
%% Cell type:markdown id: tags:
The following code creates a MatPlotLib figure showing the scalability plots for all specified systems. You might want to adjust its styling etc. according to your preferences. Make sure to also set a filename.
%% Cell type:code id: tags:
```
plt.style.use('ggplot')
plt.rcParams['pdf.fonttype'] = 42 # TrueType fonts
plt.rcParams['ps.fonttype'] = 42 # TrueType fonts
plt.rcParams['axes.facecolor']='w'
plt.rcParams['axes.edgecolor']='555555'
#plt.rcParams['ytick.color']='black'
plt.rcParams['grid.color']='dddddd'
plt.rcParams['axes.spines.top']='false'
plt.rcParams['axes.spines.right']='false'
plt.rcParams['legend.frameon']='true'
plt.rcParams['legend.framealpha']='1'
plt.rcParams['legend.edgecolor']='1'
plt.rcParams['legend.borderpad']='1'
@FuncFormatter
def load_formatter(x, pos):
return f'{(x/1000):.0f}k'
markers = ['s', 'D', 'o', 'v', '^', '<', '>', 'p', 'X']
def splitSerToArr(ser):
return [ser.index, ser.as_matrix()]
plt.figure()
#plt.figure(figsize=(4.8, 3.6)) # For other plot sizes
#ax = df.plot(kind='line', marker='o')
for i, column in enumerate(df):
plt.plot(df[column].dropna(), marker=markers[i], label=column)
plt.legend()
ax = plt.gca()
#ax = df.plot(kind='line',x='dim_value', legend=False, use_index=True)
ax.set_ylabel('number of instances')
ax.set_xlabel('messages/second')
ax.set_ylim(ymin=0)
#ax.set_xlim(xmin=0)
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.xaxis.set_major_formatter(FuncFormatter(load_formatter))
plt.savefig(results_dir + '/' + plot_name + '.pdf', bbox_inches='tight')
plt.savefig('temp.pdf', bbox_inches='tight')
```
%% Cell type:code id: tags:
```
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment