Skip to content
Snippets Groups Projects
Commit 9ee3dce1 authored by Simon Ehrenstein's avatar Simon Ehrenstein
Browse files

Introduce new version of benchmarking strategies

parent 97babe40
No related branches found
No related tags found
1 merge request!39Add Support for Benchmarking Strategies
......@@ -13,7 +13,7 @@ instances = sys.argv[4]
execution_minutes = int(sys.argv[5])
time_diff_ms = int(os.getenv('CLOCK_DIFF_MS', 0))
prometheus_query_path = 'http://kube1.internal:32529/api/v1/query_range'
prometheus_query_path = 'http://localhost:9090/api/v1/query_range'
#http://localhost:9090/api/v1/query_range?query=sum%20by(job,topic)(kafka_consumer_consumer_fetch_manager_metrics_records_lag)&start=2015-07-01T20:10:30.781Z&end=2020-07-01T20:11:00.781Z&step=15s
......@@ -51,14 +51,6 @@ for result in results:
df = pd.DataFrame(d)
# save whether the subexperiment was successful or not, meaning whether the consumer lag was above some threshhold or not
# Assumption: Due to fluctuations within the record lag measurements, it is sufficient to analyze the second half of measurements.
second_half = list(map(lambda x: x['value'], filter(lambda x: x['topic'] == 'input', d[len(d)//2:])))
avg_lag = sum(second_half) / len(second_half)
with open(r"last_exp_result.txt", "w+") as file:
success = 0 if avg_lag > 1000 else 1
file.write(str(success))
# Do some analysis
input = df.loc[df['topic'] == "input"]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment