@@ -20,7 +20,7 @@ A simple, but common use case in event-driven architectures is that events or me
...
@@ -20,7 +20,7 @@ A simple, but common use case in event-driven architectures is that events or me
Another common use case for stream processing architectures is reducing the amount of events, messages, or measurements by aggregating multiple records within consecutive, non-overlapping time windows. Typical aggregations compute the average, minimum, or maximum of measurements within a time window or
Another common use case for stream processing architectures is reducing the amount of events, messages, or measurements by aggregating multiple records within consecutive, non-overlapping time windows. Typical aggregations compute the average, minimum, or maximum of measurements within a time window or
count the occurrence of same events. Such reduced amounts of data are required, for example, to save computing resources or to provide a better user experience (e.g., for data visualizations).
count the occurrence of same events. Such reduced amounts of data are required, for example, to save computing resources or to provide a better user experience (e.g., for data visualizations).
When using aggregation windows of fixed size that succeed each other without gaps (called [tumbling windows](https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#tumbling-time-windows) in many stream processing enegines), the (potentially varying) message frequency is reduced to a constant value.
When using aggregation windows of fixed size that succeed each other without gaps (called [tumbling windows](https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html#tumbling-time-windows) in many stream processing engines), the (potentially varying) message frequency is reduced to a constant value.
This is also referred to as downsampling. Downsampling allows for applying many machine learning methods that require data of a fixed frequency.
This is also referred to as downsampling. Downsampling allows for applying many machine learning methods that require data of a fixed frequency.