Skip to content
Snippets Groups Projects

Add Support for Benchmarking Strategies

Files
9
# The binary search strategy
import os
from strategies.strategies.config import SubexperimentConfig
def binary_search(config, dim_value, lower, upper, subexperiment_counter):
if lower == upper:
print(f"Run subexperiment {subexperiment_counter} with config {dim_value} {config.replicass[lower]}")
subexperiment_config = SubexperimentConfig(config.use_case, config.exp_id, subexperiment_counter, dim_value, config.replicass[lower], config.partitions, config.cpu_limit, config.memory_limit, config.kafka_streams_commit_interval_ms, config.execution_minutes)
config.subexperiment_executor.execute(subexperiment_config)
result = config.subexperiment_evaluator.execute(subexperiment_config)
if result==1: # successful, the upper neighbor is assumed to also has been successful
return (lower, subexperiment_counter+1)
else: # not successful
return (lower+1, subexperiment_counter)
elif lower+1==upper:
print(f"Run subexperiment {subexperiment_counter} with config {dim_value} {config.replicass[lower]}")
subexperiment_config = SubexperimentConfig(config.use_case, config.exp_id, subexperiment_counter, dim_value, config.replicass[lower], config.partitions, config.cpu_limit, config.memory_limit, config.kafka_streams_commit_interval_ms, config.execution_minutes)
config.subexperiment_executor.execute(subexperiment_config)
result = config.subexperiment_evaluator.execute(subexperiment_config)
if result==1: # minimal instances found
return (lower, subexperiment_counter)
else: # not successful, check if lower+1 instances are sufficient
print(f"Run subexperiment {subexperiment_counter} with config {dim_value} {config.replicass[upper]}")
subexperiment_config = SubexperimentConfig(config.use_case, config.exp_id, subexperiment_counter, dim_value, config.replicass[upper], config.partitions, config.cpu_limit, config.memory_limit, config.kafka_streams_commit_interval_ms, config.execution_minutes)
config.subexperiment_executor.execute(subexperiment_config)
result = config.subexperiment_evaluator.execute(subexperiment_config)
if result == 1: # minimal instances found
return (upper, subexperiment_counter)
else:
return (upper+1, subexperiment_counter)
else:
# test mid
mid=(upper+lower)//2
print(f"Run subexperiment {subexperiment_counter} with config {dim_value} {config.replicass[mid]}")
subexperiment_config = SubexperimentConfig(config.use_case, config.exp_id, subexperiment_counter, dim_value, config.replicass[mid], config.partitions, config.cpu_limit, config.memory_limit, config.kafka_streams_commit_interval_ms, config.execution_minutes)
config.subexperiment_executor.execute(subexperiment_config)
result = config.subexperiment_evaluator.execute(subexperiment_config)
if result == 1: # success -> search in (lower, mid-1)
return binary_search(config, dim_value, lower, mid-1, subexperiment_counter+1)
else: # not success -> search in (mid+1, upper)
return binary_search(config, dim_value, mid+1, upper, subexperiment_counter+1)
def execute(config, dim_value_index, lower_replicas_bound_index, subexperiment_counter):
upper = len(config.replicass)-1
dim_value=config.dim_values[dim_value_index]
return binary_search(config, dim_value, lower_replicas_bound_index, upper, subexperiment_counter)
Loading