Skip to content
Snippets Groups Projects

Add Support for Benchmarking Strategies

All threads resolved!
1 file
+ 1
9
Compare changes
  • Side-by-side
  • Inline
+ 1
9
@@ -13,7 +13,7 @@ instances = sys.argv[4]
execution_minutes = int(sys.argv[5])
time_diff_ms = int(os.getenv('CLOCK_DIFF_MS', 0))
prometheus_query_path = 'http://kube1.internal:32529/api/v1/query_range'
prometheus_query_path = 'http://localhost:9090/api/v1/query_range'
#http://localhost:9090/api/v1/query_range?query=sum%20by(job,topic)(kafka_consumer_consumer_fetch_manager_metrics_records_lag)&start=2015-07-01T20:10:30.781Z&end=2020-07-01T20:11:00.781Z&step=15s
@@ -51,14 +51,6 @@ for result in results:
df = pd.DataFrame(d)
# save whether the subexperiment was successful or not, meaning whether the consumer lag was above some threshhold or not
# Assumption: Due to fluctuations within the record lag measurements, it is sufficient to analyze the second half of measurements.
second_half = list(map(lambda x: x['value'], filter(lambda x: x['topic'] == 'input', d[len(d)//2:])))
avg_lag = sum(second_half) / len(second_half)
with open(r"last_exp_result.txt", "w+") as file:
success = 0 if avg_lag > 1000 else 1
file.write(str(success))
# Do some analysis
input = df.loc[df['topic'] == "input"]
Loading